The "new_MAD-Based-Model" for AGS.

The Model includes the Helical Magnets for polarized proton beam operations

N. Tsoupas

Aim of this presentation

To show that the "new-MAD-Based-Model" for AGS Should be further improved

WHY???

 A "good" Model will minimize the setup time of AGS for polarized protons beam delivery in RHIC

Will allow further improvements in the optics of AGS.

Device Name Location Quad Q1 SS_A17 SS A19 Quad Q2 Cold CHM SS_A20 Helix SS_B1 Quad Q3 Quad Q4 SS_B3 Quad Q5 SS_E17 Q6 SS_E19 Quad Warm SS_E20 **WHM** Helix Quad Q7 SS_F1 Local A20 Cold Helical Magnet Only Beam Bump

Additional Devices in the AGS Ring when it runs with Helical Magnets

Again; Why a "new_MAD-Model"? The "old_MAD-Model" is not good enough?

The Helical Magnets do affect the beam optics.

- Helical magnets Focus the beam in both, the Horizontal and Vertical planes
- Introduce some transverse linear beam coupling.
- The beam path in the Helical Magnet is almost a helix which adds 2-3 mm in the path length.
- Introduce "some" higher order magnetic multipoles.

Device	Name	Location	Model
Quad	Q1	SS_A17	Quad
Quad	Q2	SS_A19	Quad
Cold Helix	СНМ	SS_A20	R_Matrix
Quad	Q3	SS_B1	Quad
Quad	Q4	SS_B3	Quad
Quad	Q5	SS_E17	Quad
Quad	Q6	SS_E19	Quad
Warm Helix	WHM	SS_E20	R_matrix
Quad	Q7	SS_F1	Quad
Local Beam Bump	A20 Cold Helical Magnet Only		Kick

The 'New MAD_Based_Model" includes these devices.

Constraints of the "new MAD_Based Model" for the AGS during beam "Acceleration": .

- Horizontal and Vertical tunes are constraint.

 Minimize the beam size during the Magnet cycle especially at Injection Energies.

How do we test the "new MAD_Based Model"?

- Compare Experimentally Measured Quantities with those as Calculated from the "new MAD_Model".
 - $-Q_x,Q_y$ as a function of R_{ave} (Average Radius of the circulating beam).
 - Dispersion functions (η_x, η_y) of the AGS at the location of the BPM's.
 - Beta function (β_x, β_y) of the AGS at convenient the locations along the ring.
 - Measurements to test beam coupling

Example:

Measurements on AGS_User#1 Warm and Cold Helical magnets May 29 2009 Booster-AGS-Log#295 (AGS at Injection)

- Q1,Q2 as a function of R_{ave}
- Dispersion measurements at the location BPM's
- Beta functions at the location of the Compensation Quads

Chromaticity AGS User#1 Warm/Cold Helices at Gγ=4.5

Qx,y Tunes vs Ave Beam Radius

Comments:

- a) The Warm and Cold Helices are modeled after Alfredo's matrices.
- b) Error in $Q_{x,y}$ is much smaller of the size of the points.
- c) "FFT" and "Fit" in very good agreement.

Conclusions:

Measured Chromaticity not in agreement with the modeled one.

Dispersion (η_x, η_y) at BPM's at R_{beam}=0.0 mm AGS User#1 Warm/Cold Helices at G γ =4.5

Comments:

- a) The Warm and Cold Helices are modeled after Alfredo's R_matrices.
- b) Error in $\eta_{x,y}$ is the size of the points.

Conclusions:

Measured Coupling stronger than the Modeled one.

Beta values at QA17 and QE17 AGS User#1 Warm/Cold Helices at Gγ=4.5

Comments:

Relative Error in measuring $\beta_{x,y}$ is ±30%

Conclusions:

No Good agreement with model

Conclusions from the:

Measurements on AGS_User#1 Warm and Cold Helical magnets May 29 2009 Booster-AGS-Log#295 (AGS at Injection)

• Measurements vs. Calculations described below;

• Q1,Q2 as a function of R_{ave} ;

Not good agreement

• Dispersion measurements at the location BPM's

Not good agreement

• Beta functions at the location of the Comp. Quads

Not good agreement

• The quantities generated by the "new-AGS-Model" do not agree well with the measured ones.

There are many more measurements "done" on AGS_User#3. The data from these measurements have been analyzed or are in the process to be analyzed.

This inability of the "new AGS-Model" to agree with the measured quantities raises the Questions;

- What devices in AGS are not modeled correctly to account for this discrepancy?
 - Cold helical Magnet ?
 - Warm helical Magnet ?
 - Both Cold and Warm ?
 - Or is it that the "Bare AGS" bares some responsibility for the disagreement?

From the data of the measurements we have analyzed till now; We can conclude;

• The MAD-Model of the Bare AGS needs to be modified "a bit" to be in agreements with the measured quantities.

• The Matrices that describe the Cold and Warm Helical magnets have to be modified "a bit".

At these fields at which the Helical Magnets are operating;
 The magnets are simply "Helical" and easy to work with;
 by no means these magnets are "Hell ical".

